CAPITULO 3 – “VLAN”

 INTRODUCCIÓN DEL CAPITULO.- 
    INTRODUCCIÓN DEL CAPITULO.- El rendimiento de la red puede ser un factor en la productividad de una organización y su reputación para realizar sus transmisiones en la forma prevista. Una de las tecnologías que contribuyen al excelente rendimiento de la red es la división de los grandes dominios de broadcast en dominios más pequeños con las VLAN. Los dominios de broadcast más pequeños limitan el número de dispositivos que participan en los broadcasts y permiten que los dispositivos se separen en agrupaciones funcionales, como servicios de base de datos para un departamento contable y transferencia de datos a alta velocidad para un departamento de ingeniería. En este capítulo, aprenderá a configurar, manejar ysolucionar problemas de las VLAN y los enlaces troncales.

PRESENTACIÓN DE LAS VLAN.- Antes de las VLAN Para poder apreciar por qué las VLAN se utilizan tanto hoy en día, considere una pequeña comunidad con dormitorios de estudiantes y oficinas del cuerpo docente, todo en un solo edificio. La figura muestra las computadoras de los estudiantes en una LAN y las computadoras del cuerpo docente en otra LAN. Esto funciona bien debido a que todos los departamentos están juntos físicamente, por lo tanto, es fácil proporcionarles los recursos de la red.
Rangos del ID de la VLAN El acceso a las VLAN está dividido en un rango normal o un rango extendido.
VLAN de rango normal
    Se utiliza en redes de pequeños y medianos negocios y empresas.     Se identifica mediante un ID de VLAN entre 1 y 1005.     Los ID de 1002 a 1005 se reservan para las VLAN Token Ring y FDDI.     Los ID 1 y 1002 a 1005 se crean automáticamente y no se pueden eliminar. Aprenderá más acerca de VLAN 1 más
adelante en este capítulo.     Las configuraciones se almacenan dentro de un archivo de datos de la VLAN, denominado vlan.dat. El archivo
vlan.dat se encuentra en la memoria flash del switch.     El protocolo de enlace troncal de la VLAN (VTP), que ayuda a gestionar las configuraciones de la VLAN entre los
switches, sólo puede asimilar las VLAN de rango normal y las almacena en el archivo de base de datos de la VLAN.
VLAN de rango extendido
    Posibilita a los proveedores de servicios que amplíen sus infraestructuras a una cantidad de clientes mayor. Algunas empresas globales podrían ser lo suficientemente grandes como para necesitar los ID de las VLAN de rango extendido.
    Se identifican mediante un ID de VLAN entre 1006 y 4094.     Admiten menos características de VLAN que las VLAN de rango normal.
 TIPOS DE VLAN.- Hoy en día, existe fundamentalmente una manera de implementar las VLAN: VLAN basada en puerto. Una VLAN basada en puerto se asocia con un puerto denominado acceso VLAN.
Sin embargo, en las redes existe una cantidad de términos para las VLAN. Algunos términos definen el tipo de tráfico de red que envían y otros definen una función específica que desempeña una VLAN. A continuación, se describe la terminología común de VLAN:
Pase el mouse sobre el botón VLAN de Datos en la figura. VLAN de Datos
Una VLAN de datos es una VLAN configurada para enviarsólo tráfico de datos generado por el usuario. Una VLAN podría enviar tráfico basado en voz o tráfico utilizado para administrar el switch, pero este tráfico no sería parte de una VLAN de datos. Es una práctica común separar el tráfico de voz y de administración del tráfico de datos. La importancia de separar los datos del usuario del tráfico de voz y del control de administración del switch se destaca mediante el uso de un término específico para identificar las VLAN que sólo pueden enviar datos del usuario: una "VLAN de datos". A veces, a una VLAN de datos se la denomina VLAN de usuario.

VLAN Predeterminada
Todos los puertos de switch se convierten en un miembro de la VLAN predeterminada luego del arranque inicial del switch. Hacer participar a todos los puertos de switch en la VLAN predeterminada los hace a todos parte del mismo dominio de broadcast. Esto admite cualquier dispositivo conectado a cualquier puerto de switch para comunicarse con otros dispositivos en otros puertos de switch. La VLAN predeterminada para los switches de Cisco es la VLAN 1. La VLAN 1 tiene todas las características de cualquier VLAN, excepto que no la puede volver a denominar y no la puede eliminar. El tráfico de control de Capa 2, como CDP y el tráfico del protocolo spanning tree se asociará siempre con la VLAN 1: esto no se puede cambiar. En la figura, el tráfico de la VLAN1 se envía sobre los enlaces troncales de la VLAN conectando los switches S1, S2 y S3. Es una optimización de seguridad para cambiar la VLAN predeterminada a una VLAN que no sea la VLAN 1; esto implica configurar todos los puertos en el switch para que se asocien con una VLAN predeterminada que no
sea la VLAN 1. Los enlaces troncales de la VLANadmiten la transmisión de tráfico desde más de una VLAN. A pesar de que los enlaces troncales de la VLAN se mencionan a lo largo de esta sección, se explican a detalle en la próxima sección.
Nota: Algunos administradores de red utilizan el término "VLAN predeterminada" para referirse a una VLAN que no sea la VLAN 1 que el administrador de red definió como la VLAN a la que se asignan todos los puertos cuando no están en uso. En este caso, la única función que cumple la VLAN 1 es la de manejar el tráfico decontrol de Capa 2 para la red.

VLAN Nativa
Una VLAN nativa está asignada a un puerto troncal 802.1Q. Un puerto de enlace troncal 802.1 Q admite el tráfico que llega de muchas VLAN (tráfico etiquetado) como también el tráfico que no llega de una VLAN (tráfico no etiquetado). El puerto de enlace troncal 802.1Q coloca el tráfico no etiquetado en la VLAN nativa. En la figura, la VLAN nativa es la VLAN 99. El tráfico no etiquetado lo genera una computadora conectada a un puerto de switch que se configura con la VLAN nativa. Las VLAN se establecen en la especificación IEEE 802.1Q para mantener la compatibilidad retrospectiva con el tráfico no etiquetado común para los ejemplos de LAN antigua. Para nuestro fin, una VLAN nativa sirve como un identificador común en extremos opuestos de un enlace troncal. Es una optimización usar una VLAN diferente de la VLAN 1 como la VLAN nativa.

Tipos de tráfico de red EnCCNAExploration:EnAspectosbásicosderedes,aprendiósobrelosdiferentestpiosdetráficoquepuedemanejaruna LAN. Debido a que una VLAN tiene todas las características de una LAN, una VLAN debe incorporar el mismo tráfico de red que una LAN.
Administración de red y tráfico de control
Muchos tipos diferentes de tráfico de administración de red y de control pueden estar presentes en la red, como las actualizaciones de Cisco Discovery Protocol (CDP), Simple Network Management Protocol (SNMP) y tráfico de Remote Monitoring (RMON).
Pase el mouse sobre el botón Administración de red en la figura. Telefonía IP
Los tipos de tráfico de telefonía IP son el tráfico de señalización y el tráfico de voz. El tráfico de señalización es responsable de la configuración de la llamada, el progreso y la desconexión y atraviesa la red de extremo a extremo. El otro tipo de tráfico de telefonía consiste en paquetes de datos de la conversación de voz existente. Como acaba de ver, en una red configurada con VLAN, se recomienda con énfasis asignar una VLAN diferente a la VLAN 1 como VLAN de administración. El tráfico de datos debe asociarse con una VLAN de datos (diferente a la VLAN 1) y el tráfico de voz se asocia con una VLAN de voz.
Pase el mouse sobre el botón Telefonía IP en la figura. IP Multicast
El tráfico IP multicast se envía desde una dirección de origen particular a un grupo multicast que se identifica mediante un único IP y un par de direcciones MAC de grupo de destino. Broadcasts Cisco IP/TV son ejemplos de aplicaciones que genera este tipo de tráfico. El tráfico multicast puede producir una gran cantidad de datos que se transmiten a través de la red. Cuando la red debe admitir tráfico multicast, las VLAN deben configurarse para asegurarse de que el tráfico multicast se dirija sólo a aquellos dispositivos de usuario que utilizan el servicio proporcionado, como aplicaciones de audio o video remoto. Los routers se deben configurar para asegurar que el tráfico multicast se envíe a las áreas de red cuando se le solicita.
VLAN estática: los puertos en un switch se asignan manualmente a una VLAN. Las VLAN estáticas se configuran por medio de la utilización del CLI de Cisco. Esto también se puede llevar a cabo con las aplicaciones de administración de GUI, como el Asistente de red Cisco. Sin embargo, una característica conveniente del CLI es que si asigna una interfaz a una VLAN que no existe, se crea la nueva VLAN para elusuario. Para ver un ejemplo de configuración de VLAN estática, haga clic en el botón Ejemplo de Modo Estático en la figura. Cuado haya finalizado, haga clic en el botón Modos de Puertos en la figura. Esta configuración no se examinará en detalle ahora. Se presentará más adelante en este capítulo.
    VLAN dinámica: este modo no se utiliza ampliamente en las redes de producción y no se investiga en este curso. Sin embargo, es útil saber qué es una VLAN dinámica. La membresía de una VLAN de puerto dinámico se configura utilizando un servidor especial denominado Servidor de política de membresía de VLAN (VMPS). Con el VMPS, asigna puertos de switch a las VLAN basadas en forma dinámica en la dirección MAC de origen del dispositivo conectado al puerto. El beneficio llega cuando traslada un host desde un puerto en un switch en la red hacia un puerto sobre otro switch en la red. El switch asigna en forma dinámica el puerto nuevo a la VLAN adecuada para ese host.
CONTROL DE LOS DOMINIO DE BROADCAST CON LAS VLAN.- Red sin VLAN
En funcionamiento normal, cuando un switch recibe una trama de broadcast en uno de sus puertos, envía la trama a todos los demás puertos. En la figura, toda la red está configurada en la misma subred, 172.17.40.0/24. Como resultado, cuandola computadora del cuerpo docente, PC1, envía una trama de broadcast, el switch S2 envía esa trama de broadcast a todos sus puertos. La red completa la recibe finalmente; la red es un dominio de broadcast.
Haga clic en los Broadcasts de red con segmentación de VLAN en la figura. Red con VLAN
En la figura, se dividió la red en dos VLAN: Cuerpo docente como VLAN 10 y Estudiante como VLAN 20. Cuando se envía la trama de broadcast desde la computadora del cuerpo docente, PC1, al switch S2, el switch envíaesa trama de broadcast sólo a esos puertos de switch configurados para admitir VLAN 10.
En la figura, los puertos que componen la conexión entre los switches S2 y S1 (puertos F0/1) y entre S1 y S3 (puertos F0/3) han sido configurados para admitir todas las VLAN en la red. Esta conexión se denomina enlace troncal. Más adelante en este capítulo aprenderá más acerca de los enlaces troncales.
Cuando S1 recibe la trama de broadcast en el puerto F0/1, S1 envía la trama de broadcast por el único puerto configurado para admitir la VLAN 10, puerto F0/3. Cuando S3 recibe la trama de broadcast en el puerto F0/3, envía la trama de broadcast por el único puerto configurado para admitir la VLAN 10, puerto F0/11. La trama de broadcast llega a la única otra computadora en la red configurada en la VLAN 10, la computadora PC4 del cuerpo docente.
ENLACE TRONCAL DE LAS VLAN.- 3.2.1    ENLACES TRONCALES DE LA VLAN.- ¿Qué es un enlace troncal? Es difícil describir las VLAN sin mencionar los enlaces troncales de la VLAN. Aprendió acerca de controlar broadcasts de la red con segmentación de la VLAN y observó la manera en que los enlaces troncales de la VLAN transmitieron tráfico a diferentes partes de la red configurada en una VLAN. En la figura, los enlaces entre los switches S1 y S2 y entre S1 y S3 están configurados para transmitir el tráfico que proviene de las VLAN 10, 20, 30 y 99. Es posible que esta red no funcione sin los enlaces troncales de la VLAN. El usuario descubrirá que la mayoría de las redes que encuentra están configuradas con enlaces troncales de la VLAN. Esta sección une su conocimiento previo sobre el enlace troncal de la VLAN y proporciona los detalles necesarios para poder configurar el enlace troncal de la VLAN en una red.
3.2.2    OPERACIÓN DE ENLACE TRONCAL.- Enlace troncal en acción El usuario ha aprendido la manera en que un switch maneja el tráfico sin etiquetar en un enlace troncal. El usuario sabe que las tramas que atraviesan un enlace troncal están etiquetadas con el ID de la VLAN del puerto de acceso donde llegó la trama. En la figura, la PC1 en la VLAN 10 y la PC3 en la VLAN 30 envían tramas de broadcast al switch S2. El switch S2 etiqueta esas tramas con el ID adecuado de la VLAN y luego envía las tramas a través del enlace troncal al switch S1. El switch S1 lee el ID de la VLAN en las tramas y los envía en broadcast a cada puerto configurado para admitir la VLAN 10 y la VLAN 30. El switch S3 recibe esas tramas, quita los ID de la VLAN y los envía como tramas sin etiquetar a la PC4 en la VLAN 10 y a la PC 6 en la VLAN 30.
MODOS DE ENLACES TRONCALES.- El usuario ha aprendido la manera en que el enlace troncal 802.1Q funciona en los puertos de switch de Cisco. Ahora es momento de examinar las opciones de configuración del modo de puerto de enlace troncal 802.1Q. Primero, es necesario analizar un protocolo de enlace troncal anterior de Cisco denominado enlace entre switch (ISL, Inter-Switch Link), debido a que verá esta opción en las guías de configuración de software del switch.
IEEE, no ISL
Aunque se puede configurar un switch de Cisco para admitir dos tipos de puertos de enlace troncal, IEEE 802.1Q e ISL; en la actualidad, sólo se usa el 802.1Q. Sin embargo, las redes antiguas siguen usando ISL, y es útil aprender sobre cada tipo de puerto de enlace troncal.

CONFIRUGACIÓN DE LAS VLAN Y ENLACES TRONCALES.- 3.3.1    DECRIPCIÓN GENERAL DE LA CONFIGURACIÓN DE LAS VLAN Y DE LOS TRONCALES En este capítulo, ha visto ejemplos de los comandos utilizados para configurar las VLAN y los enlaces troncales de las VLAN. En esta sección aprenderá sobre los comandos clave IOS de Cisco necesarios para crear, eliminar y verificar las VLAN y los enlaces troncales de las VLAN. Por lo general, estos comandos poseen muchos parámetros opcionales que extienden las capacidades de la tecnología de las VLAN y enlaces troncales de las VLAN. Estos comandos opcionales no se presentan; sin embargo, se suministran referencias en caso de que desee investigar estas opciones. Esta sección se enfoca en suministrarle las habilidades y conocimientos necesarios para configurar las VLAN y los enlaces troncales de la VLAN con sus características clave.
En esta sección, se muestra la sintaxis de configuración y verificación para un lado de la VLAN o del enlace troncal. En las prácticas de laboratorio y actividades configurará ambos lados y verificará que el enlace (VLAN o enlace troncal de VLAN) esté configurado correctamente.

CONFIGURACION DE UNA VLAN.- Agregue una VLAN En este tema, aprenderá a crear una VLAN estática en un switch Cisco Catalyst mediante el modo de configuración global de la VLAN. Existen dos modos diferentes para configurar las VLAN en un switch Cisco Catalyst: modo de configuración de base de datos y modo de configuración global. A pesar de que la documentación de Cisco menciona el modo de configuración de base de datos de la VLAN, se elimina a favor del modo de configuración global de la VLAN.

ADMINISTRACIÓN DE LAS VLAN.- Verificación de las vinculaciones de puerto y de las VLAN Después de configurar la VLAN, puede validar las configuraciones de la VLAN mediante la utilización de los comandos show del IOS de Cisco.
Haga clic en el botón Sintaxis del comando en la figura.
La sintaxis de comando para los diversos comandos show del IOS de Cisco debe conocerse bien. Ya ha utilizado el comando show vlan brief. Se pueden ver ejemplos de estos comandos haciendoclic en los botones de la figura.

CONFIGURACION DE UN ENLACE TRONCAL.- Configuración de un enlace troncal 802.1Q Para configurar un enlace troncal en un puerto de switch, utilice el comando switchport mode trunk. Cuando ingresa al modo enlace troncal, la interfaz cambia al modo permanente de enlace troncal y el puerto ingresa a una negociación de DTP para convertir el vínculo a un vínculo de enlace troncal, por más que la interfaz que la conecta no acepte cambiar. En este curso configurará un enlace troncal utilizando únicamente el comando switchport mode trunk. En la figura se muestra la sintaxis de comando IOS de Cisco para especificar una VLAN nativa diferente a la VLAN 1. En el ejemplo, el usuario configura la VLAN 99 como la VLAN nativa. Se muestra la sintaxis de comando utilizada para admitir una lista de las VLAN en el enlace troncal. En este puerto de enlace troncal, admita las VLAN 10, 20 y 30.

CAPITULO 2 – “CONFIGURACIÓN Y CONCEPTOS BÁSICOS DEL SWITCH”

INTRODUCCION A LAS LAN 802.3/ETHERNET.- 2.1.1    ELEMENTOS CLAVE DE LAS REDES 802.3/ETHERNET.- En este tema, se describirán los componentes clave del estándar Ethernet que desempeñan un importante papel en el diseño y en la implementación de las redes de conmutación. Se analizará cómo funcionan las comunicaciones Ethernet y el papel que desempeñan los switches en el proceso de comunicación.
CSMA/CD
Las señales de Ethernet se transmiten a todos los hosts que están conectados a la LAN mediante un conjunto de normas especiales que determinan cuál es la estación que puede tener acceso a la red. El conjunto de normas que utiliza Ethernet está basado en la tecnología de acceso múltiple por detección de portadora y detección de colisiones (CSMA/CD) IEEE. Seguramente recordará de CCNA Exploration: Aspectos básicos de networking, que CSMA/CD se utiliza solamente con la comunicación half-duplex que suele encontrarse en los hubs. Los switches full-duplex no utilizan CSMA/CD.
Acceso múltiple
Si la distancia entre los dispositivos es tal que la latencia de las señales de un dispositivo supone la no detección de éstas por parte de un segundo dispositivo, éste también podría comenzar a transmitirlas. De este modo, los medios contarían con dos dispositivos transmitiendo señales al mismo tiempo. Los mensajes se propagan en todos los medios hasta que se encuentran. En ese momento, las señales se mezclan y los mensajes se destruyen: se ha producido una colisión. Aunque los mensajes se dañan, la mezcla de señales continúa propagándose en todos los medios.
Detección de colisiones
Cuando un dispositivo está en el modo de escucha, puede detectar cuando se produce una colisión en los medios compartidos, ya que todos los dispositivos pueden detectar un aumento en la amplitud de la señal que esté por encima del nivel normal.
Cuando se produce una colisión, los demás dispositivos que están en el modo de escucha, además de todos los dispositivos de transmisión, detectan el aumento de amplitud de la señal. Todos los dispositivos que estén transmitiendo en ese momento lo seguirán haciendo, para garantizar que todos los dispositivos en la red puedan detectar la colisión.
Comunicaciones Ethernet Consulte el área de Comunicaciones Ethernet seleccionada en la figura. Las comunicaciones en una red LAN conmutada se producen de tres maneras: unicast, broadcast y multicast:
Unicast: Comunicación en la que un host envía una trama a un destino específico. En la transmisión unicast sólo existen un emisor y un receptor. La transmisión unicast es el modo de transmisión predominante en las LAN y en Internet. Algunos ejemplos de transmisiones unicast son: HTTP, SMTP, FTP y Telnet.
Broadcast: Comunicación en la que se envía una trama desde una dirección hacia todas las demás direcciones. En este caso, existe sólo un emisor pero se envía la información a todos los receptores conectados. La transmisión broadcast es fundamental cuando se envía el mismo mensaje a todos los dispositivos de la LAN. Un ejemplo de transmisión broadcast es la consulta de resolución de direcciones que envía el protocolo de resolución de direcciones (ARP) a todas las computadoras en una LAN.
Multicast: Comunicación en la que se envía una trama a un grupo específico de dispositivos o clientes. Los clientes de la transmisión multicast deben ser miembros de un grupo multicast lógico para poder recibir la información. Un ejemplo de transmisión multicast son las transmisiones de voz y video relacionadas con las reuniones de negocios en conferencia basadas en la red.
ampo Dirección MAC de destino
El campo Dirección MAC de destino (6 bytes) es el identificador del receptor deseado. La Capa 2 utiliza esta dirección para ayudar a que un dispositivo determine si la trama está dirigida a él. Se compara la dirección de la trama con la dirección MAC del dispositivo. Si coinciden, el dispositivo acepta la trama.
Campo Dirección MAC origen
El campo Dirección MAC de origen (6 bytes) identifica la NIC o interfaz que origina la trama. Los switches utilizan esta dirección para agregar dicha interfaz a sus tablas de búsqueda.
Configuración de Duplex
Se utilizan dos tipos de parámetros duplex para las comunicaciones en una red Ethernet: half duplex y full duplex. La figura muestra los dos parámetros dúplex que están disponibles en los equipos de red modernos.
Half Duplex: La comunicación half-duplex se basa en un flujo de datos unidireccional en el que el envío y la recepción de datos no se producen al mismo tiempo. Esto essimilar a la función de las radios de dos vías o dos walki-talkies en donde una sola persona puede hablar a la vez. Si una persona habla mientras lo hace la otra, se produce una colisión. Por ello, la comunicación half-duplex implementa el CSMA/CD con el objeto de reducir las posibilidades de que se produzcan colisiones y detectarlas en caso de que se presenten. Las comunicaciones half-duplex presentan problemas de funcionamiento debido a la constante espera, ya que el flujo de datos sólo se produce en unadirección a la vez. Las conexiones half-duplex suelen verse en los dispositivos de hardware más antiguos, como los hubs. Los nodos que están conectados a los hubs y que comparten su conexión con un puerto de un switch deben funcionar en el modo hal-fduplex porque las computadoras finales tienen que tener la capacidad de detectar las colisiones. Los nodos pueden funcionar en el
modo half-duplex si la tarjeta NIC no puede configurarse para hacerlo en full duplex. En este caso, el puerto del switch también adopta el modo half-duplex predeterminado. Debido a estas limitaciones, la comunicación full-duplex ha reemplazado a la half duplex en los elementos de hardware más modernos.
Full duplex: En las comunicaciones full-duplex el flujo de datos es bidireccional, por lo tanto la información puede enviarse y recibirse al mismo tiempo. La capacidad bidireccional mejora el rendimiento, dado que reduce el tiempo de espera entre las transmisiones. Actualmente, la mayoría de las tarjetas NIC Ethernet, Fast Ethernet y Gigabit Ethernet disponibles en el mercado proporciona capacidad full-duplex. En el modo full-duplex, el circuito de detección de colisiones se encuentra desactivado. Las tramas enviadas por los dos nodos finales conectados no pueden colisionar, dado que éstos utilizan dos circuitos independientes en el cable de la red. Cada conexión full-duplex utiliza un solo puerto. Las conexiones full-duplex requieren un switch que admita esta modalidad o bien una conexión directa entre dos nodos compatibles con el modo ufll duplex. Los nodos que se conecten directamente al puerto de un switch dedicado con tarjetas NIC capaces de admitir full duplex deben conectarse a puertos de switches que estén configurados para funcionar en el modo full-duplex.
El rendimiento de una configuración de red compartida Ethernet estándar basada en hubs es generalmente del 50% al 60% del ancho de banda de 10 Mb/s. Una red Fast Ethernet full-duplex, en comparación con un ancho de banda de 10 Mb/s, ofrece un rendimiento del 100% en ambas direcciones (transmisión de 100 Mb/s y recepción de 100 Mb/s).
Configuración del puerto de switch
El puerto de un switch debe configurarse con parámetros duplex que coincidan con el tipo de medio. Más adelante en este capítulo se configurarán los parámetros de duplex. Los switches Cisco Catalyst cuentan con tres parámetros:
La opción auto establece el modo autonegociación de duplex. Cuando este modo se encuentra habilitado, los dos puertos se comunican para decidir el mejor modo de funcionamiento. La opción full establece el modo full-duplex. La opción half establece el modo half-duplex.
Para los puertos 10/100/1000 y Fast Ethernet, la opción predeterminada es auto. Para los puertos 100BASE-FX, la opción predeterminada es full. Los puertos 10/100/1000 funcionan tanto en el modo half-duplex como en el full-duplex cuando se establecen en 10 ó 100 Mb/s, pero sólo funcionan en el modo full-duplex cuando se establecen en 1000 Mb/s.
2.1.2    ASPECTOS QUE SE DEBEN TENER EN CUENTA PARA LAS REDES 802.3/ETHERNET En este tema, se describirán las pautas de diseño de Ethernet que se necesitan para interpretar los diseños jerárquicos de las redes para las empresas pequeñas y medianas. Este tema se centra en los dominios de colisiónes y de broadcast, y en el modo en que éstos afectan el diseño de las LAN.
Ancho de banda y rendimiento
Una importante desventaja de las redes Ethernet 802.3 son las colisiones. Las colisiones se producen cuando dos hosts transmiten tramas de forma simultánea. Cuando se produce una colisión, las tramas transmitidas se dañan o se destruyen. Los hosts transmisores detienen la transmisión por un período aleatorio, conforme a las reglas de Ethernet 802.3 de CSMA/CD.
Dado que Ethernet no tiene forma de controlar cuál será el nodo que transmitirá en determinado momento, sabemos que cuando más de un nodo intente obtener acceso a la red, se producirán colisiones. La solución de Ethernet para las colisiones no tiene lugar de manera instantánea. Además, los nodos que estén involucrados en la colisión no podrán dar comienzo a la transmisión hasta que se resuelva el problema. Cuanto mayor sea la cantidad de nodos que se agreguen a los medios compartidos, mayor será la posibilidad de que se produzcan colisiones. Por ello, es importante comprender que al establecer el ancho de banda de la red Ethernet en 10 Mb/s, el ancho de banda completo para la transmisión estará disponible sólo una vez que se hayan resuelto las colisiones. El rendimiento neto del puerto (la cantidad promedio de datos eficazmente transmitidos) disminuirá de manera significativa según la cantidad de nodos adicionales que se utilicen en la red. Los hubs no ofrecen mecanismo alguno que sirva para eliminar o reducir estas colisiones y el ancho de banda disponible que cualquier nodo tenga que transmitir se verá reducido en consecuencia. Por lo tanto, la cantidad de nodos que comparta la red Ethernet influirá en el rendimiento o la productividad de dicha red.
Dominios de colisión
Al expandir una LAN Ethernet para alojar más usuarios con mayores requisitos de ancho de banda, aumenta la posibilidad de que se produzcan colisiones. Para reducir el número de nodos en un determinado segmento de red, se pueden crear segmentos físicos de red individuales, llamados dominios de colisión.
El área de red donde se originan las tramas y se producen las colisiones se denomina dominio de colisiones. Todos los entornos de los medios compartidos, como aquellos creados mediante el uso de hubs, son dominios de colisión.
EENVÍO DE TRAMAS MEDIANTE UN SWITCH 2.2.1    METODOS DE REEVÍO DEL SWITCH.- Métodos de reenvío de paquetes del switch
En este tema, se describirá cómo los switches reenvían tramas Ethernet en una red. Los switches pueden funcionar de distintos modos y éstos pueden tener tanto efectos positivos como negativos.
Anteriormente, los switches solían utilizar uno de los siguientes métodos de reenvío para conmutar datos entre los puertos de la red: conmutación por método de corte o almacenamiento y envío. El botón Métodos de reenvío del switch muestra estos dos métodos. Sin embargo, almacenamiento y envío es el único método de reenvío que se utiliza en los modelos actuales de los switches Cisco Catalyst.
Conmutación de almacenamiento y envío
En este tipo de conmutación, cuando el switch recibe la trama, la almacena en los buffers de datos hasta recibir la trama en su totalidad. Durante el proceso de almacenamiento, el switch analiza la trama para buscar información acerca de su destino. En este proceso, el switch también lleva a cabo una verificación de errores utilizando la porción del tráiler de comprobación de redundancia cíclica (CRC, Cyclic Redundancy Check) de la trama de Ethernet.
CONMUTACIÓN SIMÉTRICA Y ASIMÉTRICA.- Conmutación simétrica y asimétrica
En este tema, se estudiarán las diferencias entre la conmutación simétrica y asimétrica en una red. La conmutación LAN se puede clasificar como simétrica o asimétrica según la forma en que el ancho de banda se asigna a los puertos de conmutación.
La conmutación simétrica proporciona conexiones conmutadas entre puertos con el mismo ancho de banda; por ejemplo, todos los puertos de 100 Mb/s o todos los puertos de 1000 Mb/s. Un switch LAN asimétrica proporciona conexiones conmutadas entre puertos con distinto ancho de banda; por ejemplo, una combinación de puertos de 10 Mb/s, 100 Mb/s y 1000 Mb/s. La figura muestra las diferencias entre la conmutación simétrica y la asimétrica.
Asimétrica
La conmutación asimétrica permite un mayor ancho de banda dedicado al puerto de conmutación del servidor para evitar que se produzca un cuello de botella. Esto brinda una mejor calidad en el flujo de tráfico, donde varios clientes se comunican con un servidor al mismo tiempo. Se requieren buffers de memoria en un switch asimétrico. Para que el switch coincida con las distintas velocidades de datos en los distintos puertos, se almacenan tramas enteras en los buffers de memoria y se envían al puerto una después de la otra según se requiera.
Simétrico
En un switch simétrico, todos los puertos cuentan con el mismo ancho de banda. La conmutación simétrica se ve optimizada por una carga de tráfico distribuida de manera uniforme, como en un entorno de escritorio entre pares.
CONMUTACION DE CAPA 2 Y CAPA 3.- Conmutación de Capa 2 y Capa 3
En este tema, se revisará el concepto de conmutación de Capa 2 y se introducirá la conmutación de Capa 3.
Un switch LAN de Capa 2 lleva a cabo los procesos de conmutación y filtrado basándose solamente en la dirección MAC de la Capa de enlace de datos (Capa 2) del modelo OSI. El switch de Capa 2 es completamente transparente para los protocolos de la red y las aplicaciones del usuario. Recuerde que un switch de Capa 2 crea una tabla de direcciones MAC que utiliza para determinar los envíos.
Un switch de Capa 3, como el Catalyst 3560, funciona de modo similar a un switch de Capa 2, como el Catalyst 2960, pero en lugar de utilizar sólo la información de las direcciones MAC para determinar los envíos, el switch de Capa 3 puede también emplear la información de la dirección IP. En lugar de aprender qué direcciones MAC están vinculadas con cada uno de sus puertos, el switch de Capa 3 puede también conocer qué direcciones IP están relacionadas con sus interfaces. Esto permite que el switch de Capa 3 pueda dirigir el tráfico a través de la red en base a la información de las direcciones IP.

CAPITULO I – “DISEÑO DE LAN”

ARQUITECTURA DE LA LAN CONMUTADA.- 1.1.1   
 MODELO DE REDES JERÁRQUICAS.- La construcción de una LAN que satisfaga las necesidades de empresas pequeñas o medianas tiene más probabilidades de ser exitosa si se utiliza un modelo de diseño jerárquico. En comparación con otros diseños de redes, una red jerárquica se administra y expande con más facilidad y los problemas se resuelven con mayor rapidez.
El diseño de redes jerárquicas implica la división de la red en capas independientes. Cada capa cumple funciones específicas que definen su rol dentro de la red general. La separación de las diferentes funciones existentes en una red hace que el diseño de la red se vuelva modular y esto facilita la escalabilidad y el rendimiento. El modelo de diseño jerárquico típico se separa en tres capas: capa de acceso, capa de distribución y capa núcleo. Un ejemplo de diseño de red jerárquico de tres capas se observa en la figura.
Capa de acceso
La capa de acceso hace interfaz con dispositivos finales como las PC, impresoras y teléfonos IP, para proveer acceso al resto de la red. Esta capa de acceso puede incluir routers, switches, puentes, hubs y puntos de acceso inalámbricos. El propósito principal de la capa de acceso es aportar un medio de conexión de los dispositivos a la red y controlar qué dispositivos pueden comunicarse en la red.
Capa de distribución
La capa de distribución agrega los datos recibidos de los switches de la capa de acceso antes de que se transmitan a la capa núcleo para el enrutamiento hacia su destino final. La capa de distribución controla el flujo de tráfico de la red con el uso de políticas y traza los dominios de broadcast al realizar el enrutamiento de las funciones entre las LAN virtuales (VLAN) definidas en la capa de acceso. Las VLAN permiten al usuario segmentar el tráfico sobre un switch en subredes separadas. Por ejemplo, en una universidad el usuario podría separar el tráfico según se trate de profesores, estudiantes y huéspedes. Normalmente, los switches de la capa de distribución son dispositivos que presentan disponibilidad y redundancia altas para asegurar la fiabilidad. Aprenderá más acerca de las VLAN, los dominios de broadcast y el enrutamiento entre las VLAN, posteriormente en este curso.
Capa núcleo
La capa núcleo del diseño jerárquico es la backbone de alta velocidad de la internetwork. La capa núcleo es esencial para la interconectividad entre los dispositivos de la capa de distribución, por lo tanto, es importante que el núcleo sea sumamente disponible y redundante. El área del núcleo también puede conectarse a los recursos de Internet. El núcleo agrega el tráfico
de todos los dispositivos de la capa de distribución, por lo tanto debe poder reenviar grandes cantidades de datos rápidamente.
Beneficios de una red jerárquica Existen muchos beneficios asociados con los diseños de la red jerárquica. Escalabilidad
Las redes jerárquicas escalan muy bien. La modularidad del diseño le permite reproducir exactamente los elementos del diseño a medida que la red crece. Debido a que cada instancia del módulo es consistente, resulta fácil planificar e implementar la expansión. Por ejemplo, si el modelo del diseño consiste en dos switches de la capa de distribución por cada 10 switches de la capa de acceso, puede continuar agregando switches de la capa de acceso hasta tener 10 switches de la capa de acceso interconectados con los dos switches de la capa de distribución antes de que necesite agregar switches adicionales de la capa de distribución a la topología de la red. Además, a medida que se agregan más switches de la capa de distribución para adaptar la carga de los switches de la capa de acceso, se pueden agregar switches adicionales de la capa núcleo para manejar la carga adicional en el núcleo.
Beneficios de una red jerárquica Existen muchos beneficios asociados con los diseños de la red jerárquica. Escalabilidad
Las redes jerárquicas escalan muy bien. La modularidad del diseño le permite reproducir exactamente los elementos del diseño a medida que la red crece. Debido a que cada instancia del módulo es consistente, resulta fácil planificar e implementar la expansión. Por ejemplo, si el modelo del diseño consiste en dos switches de la capa de distribución por cada 10 switches de la capa de acceso, puede continuar agregando switches de la capa de acceso hasta tener 10 switches de la capa de acceso interconectados con los dos switches de la capa de distribución antes de que necesite agregar switches adicionales de la capa de distribución a la topología de la red. Además, a medida que se agregan más switches de la capa de distribución para adaptar la carga de los switches de la capa de acceso, se pueden agregar switches adicionales de la capa núcleo para manejar la carga adicional en el núcleo.
Redundancia
A medida que crece una red, la disponibilidad se torna más importante. Puede aumentar radicalmente la disponibilidad a través de implementaciones redundantes fáciles con redes jerárquicas. Los switches de la capa deacceso se conectan con dos switches diferentes de la capa de distribución para asegurar la redundancia de la ruta. Si falla uno de los switches de la capa de distribución, el switch de la capa de acceso puede conmutar al otro switch de la capa de distribución. Adicionalmente, los switches de la capa de distribución se conectan con dos o más switches de la capa núcleo para asegurar la disponibilidad de la ruta si falla un switch del núcleo. La única capa en donde se limita la redundancia es la capa de acceso. Habitualmente, los dispositivos de nodo final, como PC, impresoras y teléfonos IP, no tienen la capacidad de conectarse con switches múltiples de la capa de acceso para redundancia. Si falla un switch de la capa de acceso, sólo se verían afectados por la interrupción los dispositivos conectados a ese switch en particular. El resto de la red continuaría funcionando sin alteraciones.
Rendimiento
El rendimiento de la comunicación mejora al evitar la transmisión de datos a través de switches intermediariosde bajo rendimiento. Los datos se envían a través de enlaces del puerto del switch agregado desde la capa de acceso a la capa de distribución casi a la velocidad de cable en la mayoría de los casos. Luego, la capa de distribución utiliza sus capacidades de conmutar el alto rendimiento para reenviar el tráfico hasta el núcleo, donde se enruta hacia su destino final. Debido a que las capas núcleo y de distribución realizan sus operaciones a velocidades muy altas, no existe contención para el ancho de banda de la red. Como resultado, las redes jerárquicas con un diseño apropiado pueden lograr casi la velocidad de cable entre todos los dispositivos.
Seguridad
La seguridad mejora y es más fácil de administrar. Es posible configurar los switches de la capa de acceso con varias opciones de seguridad del puerto que proveen control sobre qué dispositivos se permite conectar a la red. Además, se cuenta con la flexibilidad de utilizar políticas de seguridad más avanzadas en la capa de distribución. Puede aplicar las políticas de control de acceso que definen qué protocolos de comunicación se implementan en su red y dónde se les permite dirigirse. Por ejemplo, si desea limitar el uso de HTTP a una comunidad de usuarios específica conectada a la capa de acceso, podría aplicar una política que bloquee el tráfico de HTTP en la capa de distribución. La restricción del tráfico en base a protocolos de capas más elevadas, como IP y HTTP, requiere que sus switches puedan procesar las políticas en esa capa. Algunos switches de la capa de acceso admiten la funcionalidad de la Capa 3, pero en general es responsabilidad de los switches de la capa de distribución procesar los datos de la Capa 3, porque pueden procesarlos con mucha más eficacia.
Facilidad de administración
La facilidad de administración es relativamente simple en una red jerárquica. Cada capa del diseño jerárquico cumple funciones específicas que son consistentes en toda esa capa. Por consiguiente, si necesita cambiar la funcionalidad de un switch de la capa de acceso, podría repetir ese cambio en todos los switches de la capa de acceso en la red porque presumiblemente cumplen las mismas funciones en su capa. La implementación de switches nuevos también se simplifica porque se pueden copiar las configuraciones del switch entre los dispositivos con muy pocas modificaciones. La consistencia entre los switches en cada capa permite una recuperación rápida y la simplificación de la resolución de problemas. En algunas situaciones especiales, podrían observarse inconsistencias de configuración entre los dispositivos, por eso debe asegurarse de que las configuraciones se encuentren bien documentadas, de manera que pueda compararlas antes de la implementación.
Capacidad de mantenimiento
Debido a que las redes jerárquicas son modulares en naturaleza y escalan con mucha facilidad, son fáciles de mantener. Con otros diseños de la topología de la red, la administración se torna altamente complicada a medida que la red crece. También, en algunos modelos de diseños de red, existe un límite en cuanto a la extensión del crecimiento de la red antes de que se torne demasiado complicada y costosa de mantener. En el modelo del diseño jerárquico se definen las funciones de los switches en cada capa haciendo que la selección del switch correcto resulte más fácil. La adición de switches a una capa no necesariamente significa que se evitará un cuello de botella u otra limitación en otra capa. Para que una topología de red de malla completa alcance el rendimiento máximo, es necesario que todoslos switches sean de alto rendimiento porque es fundamental que cada switch pueda cumplir todas las funciones en la red. En el modelo jerárquico, las funciones de los switches son diferentes en cada capa. Se puede ahorrar dinero con el uso de switches de la capa de acceso menos costosos en la capa inferior y gastar más en los switches de la capa de distribución y la capa núcleo para lograr un rendimiento alto en la red.
RINCIPIOS DE DISEÑO DE REDES JERÁRQUICAS.- Principios de diseño de redes jerárquicas
Sólo porque aparentemente una red presenta un diseño jerárquico, no significa que la red esté bien diseñada. Estas guías simples le ayudan a diferenciar entre redes jerárquicas con un buen diseño y las que presentan un diseño deficiente. La intención de esta sección no es proporcionarle todas las destrezas y el conocimiento que necesita para diseñar una red jerárquica sino ofrecerle una oportunidad de comenzar a practicar sus destrezas a través de la transformación de una topología de red plana en una topología de red jerárquica.
Diámetro de la red
Al diseñar una topología de red jerárquica, lo primero que debe considerarse es el diámetro de la red. Con frecuencia, el diámetro es una medida de distancia pero en este caso se utiliza el término para medir el número de dispositivos. El diámetro de la red es el número de dispositivos que un paquete debe cruzar antes de alcanzar su destino. Mantener bajo el diámetro de la red asegura una latencia baja y predecible entre los dispositivos.
Redundancia
La redundancia es una parte de la creación de una red altamente disponible. Se puede proveer redundancia de varias maneras. Por ejemplo, se pueden duplicar las conexiones de red entre los dispositivos o se pueden duplicar los propios dispositivos. Este capítulo explora cómo emplear rutas de redes redundantes entre los switches. Un análisis de la duplicación de los dispositivos de red y del empleo de protocolos especiales de red para asegurar una alta disponibilidad excede el alcance de este curso. Para acceder a un análisis interesante acerca de la alta disponibilidad, visite: http://www.cisco.com/en/US/products/ps6550/products_ios_technology_home.html.
La implementación de los enlaces redundantes puede ser costosa. Imagine que cada switch en cada capa de la jerarquía de la red tiene una conexión con cada switch de la capa siguiente. Es improbable que sea capaz de implementar la redundancia en la capa de acceso debido al costo y a las características limitadas en los dispositivos finales pero puede crear redundancia en las capas de distribución y núcleo de la red.
1.1.3    ¿QUÉ ES UNA RED CONVERGENTE?.- Las empresas pequeñas y medianas adoptan la idea de ejecutar servicios de voz y video en sus redes de datos. Observemos cómo la voz y el video sobre IP (VoIP) afectan una red jerárquica.
Equipos heredados
La convergencia es el proceso de combinación de las comunicaciones con voz y video en una red de datos. Las redes convergentes han existido durante algún tiempo pero sólo fueron factibles en grandes organizaciones empresariales debido a los requisitos de infraestructura de la red y a la compleja administración necesaria para hacer que dichas redes funcionen en forma continua.
RELACIÓN ENTRE SWITCHES Y LAS FUNCIONES DE LA LAN.- 1.2.1    CONSIDERACIONES PARA LOS SWITCHES DE REDES JERÁRQUICAS.- Análisis de flujo de tráfico
Para seleccionar el switch apropiado para una capa en una red jerárquica, es necesario contar con especificaciones que detallen los flujos de tráfico objetivo, las comunidades de usuario, los servidores de datos y los servidores de almacenamiento de datos.
Las empresas necesitan una red que pueda satisfacer los requerimientos del desarrollo. Una empresa puede comenzar con algunas PC interconectadas de manera que puedan compartir datos. A medida que la empresa contrata más empleados, los dispositivos, como PC, impresoras y servidores, se agregan a lared. La incorporación de los nuevos dispositivos implica un aumento en el tráfico de la red. Algunas compañías reemplazan sus sistemas telefónicos existentes por sistemas telefónicos VoIP convergentes, lo que agrega un tráfico adicional.
Diagramas de topología
Un diagrama de topología es una representación gráfica de la infraestructura de una red. Un diagrama de topología muestra cómo se interconectan todos los switches e incluye detalles de qué puerto del switch interconecta los dispositivos. Un diagrama de topología muestra de forma gráfica toda ruta redundante o todos los puertos agregados entre los switches que aportan resiliencia y rendimiento. Demuestra dónde y cuántos switches están en uso en su red, así como también identifica su configuración. Los diagramas de topología también pueden contener información acerca de las densidades de los dispositivos y de las comunidades de usuarios. Al tener un diagrama de topología, se pueden identificar visualmente los potenciales cuellos de botella en un tráfico de red de manera que se pueda centrar la recopilación de datos del análisis de tráfico en áreas en las que las mejoras pueden ejercer el impacto más significativo en el rendimiento.
CARACTERÍSTICAS DE LOS SWITCHES.- Factores de forma de los switches ¿Cuáles son las características clave de los switches que se utilizan en las redes jerárquicas? Al buscar las especificaciones para un switch, ¿Qué significan todos los acrónimos y las frases? ¿Qué significa "PoE" y qué es "tasa de reenvío"? En este tema aprenderá sobre estas características.
Al seleccionar un switch se necesita decidir entre una configuración fija o una configuración modular y entre apilable y no apilable. Otra consideración es el grosor del switch expresado en cantidad de bastidores. Por ejemplo, los Switches de configuración fija que se muestran en la figura son todos de 1 bastidor (1U). Con frecuencia estasopciones se denominan factores de forma del switch.
Switches de configuración fija Los switches de configuración fija son sólo lo que podría esperarse: fijos en su configuración. Esto significa que no se pueden agregar características u opciones al switch más allá de las que originalmente vienen con el switch. El modelo en particular que se compra determina las características y opciones disponibles. Por ejemplo, si se adquiere un switch fijo gigabit de 24 puertos, no se pueden agregar puertos cuando se les necesite. Habitualmente, existen diferentes opciones de configuración que varían en cuanto al número y al tipo de puertos incluidos.
Switches modulares Los switches modulares ofrecen más flexibilidad en su configuración. Habitualmente, los switches modulares vienen con chasis de diferentes tamaños que permiten la instalación de diferentes números de tarjetas de línea modulares. Las tarjetas de línea son las que contienen los puertos. La tarjeta de línea se ajusta al chasis del switch de igual manera que las tarjetas de expansión se ajustan en la PC. Cuanto más grande es el chasis, más módulos puede admitir. Como se observa en la figura, es posible elegir entre muchos tamaños de chasis diferentes. Si se compró un switch modular con una tarjeta de línea de 24 puertos, con facilidad se podría agregar una tarjeta de línea de 24 puertos para hacer que el número de puertos ascienda a 48.
Switches apilables Los switches apilables pueden interconectarse con el uso de un cable especial del backplane que otorgarendimiento de ancho de banda entre los switches. Cisco introdujo la tecnología StackWise en una de sus líneas de productos con switches. StackWise permite interconectar hasta nueve switches con el uso de conexiones backplane totalmente redundantes. Como se observa en la figura, los switches están apilados uno sobre el otro y los cables conectan los switches en forma de cadena margarita. Los switches apilados operan con efectividad como un único switch más grande. Los switches apilables son convenientes cuando la tolerancia a fallas y la disponibilidad de ancho de banda son críticas y resulta costoso implementar un switch modular. El uso de conexiones cruzadas hace que la red pueda recuperarse rápidamente si falla un único switch. Los switches apilables utilizan un puerto especial para las interconexiones y no utilizan puertos de línea para las conexiones inter switches. Asimismo, las velocidades son habitualmente más rápidas que cuando se utilizan puertos de línea para la conexión de switches.